WebOct 28, 2024 · ctx.save_for_backward (indices) ctx.mark_non_differentiable (indices) return output, indices else: ctx.indices = indices return output @staticmethod def backward (ctx, grad_output, grad_indices=None): grad_input = Variable (grad_output.data.new (ctx.input_size).zero_ ()) if ctx.return_indices: indices, = ctx.saved_variables WebFeb 3, 2024 · class ClampWithGradThatWorks (torch.autograd.Function): @staticmethod def forward (ctx, input, min, max): ctx.min = min ctx.max = max ctx.save_for_backward (input) return input.clamp (min, max) @staticmethod def backward (ctx, grad_out): input, = ctx.saved_tensors grad_in = grad_out* (input.ge (ctx.min) * input.le (ctx.max)) return …
Defining Custom leaky_relu functions - autograd - PyTorch …
WebThe forward no longer accepts a ctx argument. Instead, you must also override the torch.autograd.Function.setup_context() staticmethod to handle setting up the ctx object. output is the output of the forward, inputs are a Tuple of inputs to the forward.. See Extending torch.autograd for more details. The context can be used to store arbitrary … WebOct 8, 2024 · You can cache arbitrary objects for use in the backward pass using the ctx.save_for_backward method. """ ctx.save_for_backward(input, weights) return input*weights @staticmethod def backward(ctx, grad_output): """ In the backward pass we receive a Tensor containing the gradient of the loss with respect to the output, and we … grandma got run over by a reindeer piano pdf
RAFT-3D/se3_field.py at master · princeton-vl/RAFT-3D · GitHub
WebFeb 24, 2024 · You should never use .data as a general rule. If you want to get a new Tensor with no history, you should use .detach (). save_for_backward should only be called with either inputs or outputs to the Function. History is not tracked through the save_for_backward / saved_tensors, so you cannot do this and expect the grad call in … WebOct 18, 2024 · Class Swish (Function): @staticmethod def forward (ctx, i): result = i*i.sigmoid () ctx.save_for_backward (result,i) return result @staticmethod def backward (ctx, grad_output): result,i = ctx.saved_variables sigmoid_x = i.sigmoid () return grad_output * (result+sigmoid_x* (1-result)) swish= Swish.apply class Swish_module (nn.Module): def … WebAug 21, 2024 · Thanks, Thomas. Looking through the source code it seems like the main advantage to save_for_backward is that the saving is done in C rather python. So it … grandma got run over by a reindeer parody